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Exercise 1

Let f: [0,7] x R3 x R? — R be a function which is C! in ¢ and =z, such that (w,vs)
B(v — vy, w)(f'fi — [ f+) is integrable for all (¢, z,v).

(i) Assume that f solves the Boltzmann equation

ocf +v-Vaof =Q(f. f), (1)

with initial datum fy. Prove that
t
F(t2,0) = fole — tv,v) + L QU (s, — (¢ — s)v,v)ds. )

In the following we will call a continuous function f which is solution of (2) a mild
solution of the Boltzmann equation.

We consider now a system of Mazwellian molecules, i.e. a system in which B is of the form
B (v — vy, w) = b(cosf), where we indicate with 0 the angle between w and the vector
v — v4. On b we only assume that (., b(cosf)dw is finite and bounded uniformly in v
and v, (notice that by definition # depends on w and vy), i.e. there exists a positive real
number 8 such that

f b(cosf) dw < S, VY (v,v4) € R® x R3. (3)
S2

We also call ¢ (v) := e—alvf?
mass.

, with o > 0, a Maxwellian function and M := {5 ¢ (v) dv its

Finally, assume that fy : R? x R® — R is a continuous function such that |fy| < ¢ and

define the sequence of functions { ]?n} . defined recursively as
n=

=

jz)(t,x,v) = fo(z,v), o (4)
fos1(t,z,v) = fo(z —tv,v) + Sé Q(fny fn)(s,x — (t — s)v,v)ds.

(ii) Assuming that |f, (¢, z,v)| < 2¢(v), prove that | f11(t, z,v)| < (1+88Mt)p(v), for

all (t,x,v) € Ry x R? x R3 and all n > 0. Prove also that f, is continuous, for all
n = 0.

(iii) We define T'= 1/(88M ). Prove that, for all ¢t € [0, 7] and n > 0,

~



(iv) Define

ifl, = sup  HETO] (6)

(t,x,0)€[0,T] xR3xR3 ¥ (v)

where it’s important to notice that now the supremum in ¢ is taken on the interval

[0,T7].

Denote [f](v, v, w) = f(V)f(v)) — f(v)f(vs) (where we omit everywhere the vari-
able x out of convenience) and prove that, for all z,v,v, € R3, t € [0,T], w € S? and
all n = 0:

|[fn+1](’ua U*) - [fn](’U, U*)|
p(v)p(vx)

< 8] fus1 — fullo- (7)

(v) Use (7) to bound |Q(frs1, fus1)(®) — Q(fn, fn)(v)] and to deduce that for all ¢t €
[0, 7]

1QUn+1, Jar1) = QUns J) o < 88M | frsr = Jully- (8)

(vi) Prove, for all n > 1, that
| Fust = Fallo < 8BMT|fn = il o o ©
1Q(Fnsts Fus1) = Q(Fns Fu)lle < 8BMTQ(Fu 1) — QUFnrts Fut)ll-

Deduce, for any 0 < o < 1, that the sequences of functions {fn},@o and {Q(fn, fn)}

n=0
are respectively converging uniformly towards some continuous limits f and @ on
[0,aT] x R? x R3.

(vii) Prove that f is a mild solution of the Boltzmann equation with initial datum fo.

Remark. We recall that, for particles interacting via inverse-power laws potentials ¢(r) =
1/r*=1 (with k > 2), the collision kernel B(v — vy, cos ) takes the particular form B =
b(cos 0)|v—v, |7, withy = (k—5)/(k—1), and b locally smooth. The case we just considered
is the case of Mazwellian molecules, corresponding to the case v = 0.

Proof. To see (i) we first notice that if we differenciate in time the function f (¢, + tv,v)
we get

O (f (t,z + tv,v)) = (Ouf) (t,x + tv,v) + v - (Vi f) (¢, x + tv,v) (10)
= (Oef +v-Vaf) (t,x +tv,v) (11)
=Q(f, f)(t,z + tv,v). (12)

Therefore, using the Duhamel principle we get

t
ft,x+tv,v) = fo(zx,v) + L Q(f, f) (s,x + sv,v)ds. (13)

Applying the last equality at the position ' = z — tv we get (2).



To proof (ii), we get first that

(14)

QU ol = [ [ beost) (7~ 1) o

<

fRs L? b(cos0) f' frdw dvs| + URB Jsz b(cosO) ffedw dug|.  (15)

Notice now that if we assume that |f| < 2¢ we get
PEI= 17 @) £ (@) < 4p (v) @ (1) = e (11D (16)
= 4D = 4o () o (), a7)

where we used that by definition the transformation (v,v,) — (v, v}) preserves the kinetic
energy. As a consequence if |f| < ¢) we bound Q (f, f) as

Q(f, f) (z,v)] <8 J;W LQ b (cosB) o (v) po (vs) dw dv, < 8BMep (v). (18)

Assume now that ’fn (t,x,v)} < 2¢p (v), we get

t

P (t,2,0)| = Q(Fudu) sz = (t=s)vv)ds|  (19)

fo(x—tv,v)-i-JO
t

<o)+ | s9Me()ds (20)
< (1+8B8Mt) ¢ (v). (21)

The continuity can be easily proven with the definition and using induction.

If we now define T := ﬁ as in (iii) we get immediately that if ’fn (t,:r:,v)‘ < 2¢(v)
(

for any ¢ € [0,77], then
easily by induction.

Fra1 (t,x,v)‘ < (14 88MT) ¢ (v) = 2¢(v), therefore (5) follows

To prove (iv) we first notice (we omit the ¢ and x variables out of convenience)

[Fon] @) = [ 7] @ 00)] = [Foin () For (1) = P @) Fon (00) - (22)
T (V) Fo (08) + Fu () T () (23)

<[ st () = Fo ()] [Fos (05) (24)

|7 )| [ () = Ta (00) (25)

st @) = Fa )] [Fasa (0) (26)

|70 @)] [Tt ) = Ta (). (27)




We now use that for any ¢t € [0, 7] and for any n we have Ful < 20 to get

~

‘[fn+1] (v,v4) — [J?n] (v,v4) ﬁl+1 (V") = fu (V')

i (v) ¢ (v4) =? o (v') %)
) Fra1 (01) = Ja () %
MY 2
T )= Fa) .
W) )
5 ]?nJrl (U*)_fn (vs) a1
i @ (vx) (31)
<8 ]?n-i-l - J?n (32)
©
where we also used the fact that we saw before that ¢ (v') ¢ (V) = ¢ (v) ¢ (v4)
To prove (v), we look at the difference @ <ﬁ1+1, fn+1) -Q (fn, ﬁ) to get
Q (Jots ) () = Q (o Fo) )] )
¢ (v)
[fnﬂ] (v, v4) — [fn] (v, )

= J]Ri‘ Lz b (cos ) 200) dw dvy (34)
<8BM |for1 — fa (35)

©
We now turn our attention to (vi); we get, by definition

[(@(i) o @-s9um) (36)

f~n+1 (t,l‘,’l}) - fn (t,IE,U)‘ =

0
~Q(Facr Far) (s = (t=)v,v) ds|  (37)
<t|Q (Fndn) =@ (Far Forr)| e @) (33)
<T HQ <me fn) -Q <f~n—1, an—1> H@ @ (v). (39)
This implies immediately
o (ta) = futtao)| <T|@(Ff) =@(FrFi)| - (40

If we now combine (8) with (40) we get (9).

Now, notice that |||, is a norm, therefore, we can use (9) to prove that there is a limit.
Indeed, all the statements above are still true if instead of 7" we consider a7 with « € [0, 1],
given that the only case where we use the explicit definition of T was to prove that



fo

< 2¢, but this is also true for 7. We can now fix o = % to rewrite (9) as

J?n+1 (t,l’,?)) - ]?n (taxvv)H < % fn (t,ZC,U) - ﬁ,l (tamav)H
@

(e F)-@(Fudi)| <t (Fud) @ (FrFn) )

@

Therefore the sequences {fn} N and {Q ( fn, fn)}

Given that ||, <[], fo— fand Q (fn, ﬁb) — @ as n — +0o0 uniformly in (¢, z,v) €
[0,2] x R3 x R3.

are Cauchy sequences for ||-|,.

ne ne

To conclude with the proof of (vii) we notice that

ft,x,v) = n]_l}r_{_loo fn (t,x,0) (42)
£
— fo(et,0) + lim | Q(Fat Jact) (s, = (t=s)v,0)ds  (43)
n— 0
t
= fo (:C,t,v)—kj Q(s,z— (t—s)v,v)ds. (44)
0
On the other hand, if we use the fact that sup,, fn < 2 to apply the dominated conver-

gence Theorem, we also have

Qtw,0) = tim Q(FurJu) (t20) (45)
= lirf J L b (cosf) [fn] (t,z,v,vy) dw dvy (46)
n—+o Jp3 Jg2

~ [, [ ot v o do = QD ). (a)

which tells us that f is indeed a mild solution.

Exercise 2

Note that to make sense, a mild solution of the Boltzmann equation, as defined by (2),
does not need to be differentiable, with respect to any of its variables.

Using the result of the previous exercise, providing a (local in time) mild solution f to
the Boltzmann equation such that |f| < 2, prove that

}%%(f(wh,mhv,v) ~ f(tz,0)) (48)

makes sense for all fixed (¢, z,v) € [0,T] x R? x R3,

For a general function f which is C' in ¢ and « , what is the limit, when h goes to zero,
of the quantity (48)?



Proof. From the fact that f is a mild solution we get

f+h,xz+hv,v)=fo(x+hv—(t+h)v,v) (49)
+ Ot+hQ(f,f)(s,:E+hv(t+h*3)v,v)ds (50)

= fo(z — tv,v) (51)

+ OHhQ(f,f) (s,z — (t — s)v,v)ds. (52)

As a consequence, through the fundamental theorem of calculus we get

t+h

1

}llii%ﬁ(f(t—i—h,x%—hv,v)—f(t,:v,v)) :%i_r%ﬁ t Qf,f)(s,x—(t—s)v,v)ds (53)
=Q(f, f)(t z,v). (54)

Now, if f is regular enough, we get
}lli_%%(f(t—i—h,x—l—hv,v)—f(t,a:,v))= (55)
:}lliiré%(f(wrh,x—irhv,v)—f(t,a;+hv,v)) (56)
4 lim T (F (624 ho) — f (1) (57)
= atf (th’U) tuv- vl‘f (t,ﬂj‘,’l)), (58)

therefore if f is regular enough, it is a classical solution of (1)

Exercise 3

In the case of hard spheres, the loss term of the Boltzmann equation writes L(f)(v)f(v),
where

L)) = [ [l @l s, de. (59)

Denote now as ¢, the Maxwellian function e~alvl?,

In their famous article of 1978, Kaniel and Shinbrot introduced the following cathegoriza-
tion on L: if there exists a positive constant C'(a) depending only on « and a positive
number 0 < A < 2 such that, for all v e R3

L(pa)(v) < C(a)(1 + [v]*), (60)
the collision kernel B describes a soft interaction if A = 0, and it describes a hard inter-

action if A > 0.

(i) Show that in the case of the hard spheres, condition (60) holds for A = 1, that is
one can find a constant C(«) such that (60) holds for all v € R3.



(ii) One may wonder if this control can be improved in the case of the hard spheres.
Show that we cannot choose A = 0 (so that, of course, the hard sphere collision
kernel does not represent a soft interaction).

(iii) Show that (60) does not hold for any 0 < A < 1 in the hard sphere case.
Proof. To prove (i) we get
L) @) = [ | o (0= 00l ga (ve) dow do (61)
S2 JR3
< |s?| f o= vl pa () dos (62)
R

<187 ([ ol on o + 1ol [ o)), (63

which implies the condition 60 for A = 1.

Now, using the change of variable v — v, = u we get

L(pa) (v) = L2 fRS w -l e~ dy du. (64)

We now apply a rotation to the integral in w in such a way that w coincide with the
vertical axis. If we do so for any |v| = 1 we get

L(a) (0) L 2 fw s ] == Gy o (65)

_ ( f |W3|dw> J ] e—lo=u gy, (66)
S2 R3

J lu + v e=eluf gy (67)
R3

> J |ws| dw MJ el gy (70)
s 2 JBy, 0
2
> f|w3|dwf e=olul gy, | 1Y (71)
2 B1(0)

This implies that 60 cannot be true for any A € [0, 1).



